
In pre-proceedings of:
ITRS 2012 (6th Workshop on Intersection Types and Related Systems)

Annotations for Intersection Typechecking

Joshua Dunfield
Max Planck Institute for Software Systems
Kaiserslautern and Saarbrücken, Germany

jos uh a@mpi-sws.org

In functional programming languages, the classic form of annotation is a single type constraint on
a term. Intersection types add complications: a single termmay have to be checked several times
against different types, in different contexts, requiringannotation with several types. Moreover, it is
useful (in some systems, necessary) to indicate the contextin which each such type is to be used.

This paper explores the technical design space of annotations in systems with intersection types.
Earlier work (Dunfield and Pfenning 2004) introducedcontextual typing annotations, which we now
tease apart into more elementary mechanisms: a “right hand”annotation (the standard form), a “left
hand” annotation (the context in which a right-hand annotation is to be used), amergethat allows
for multiple annotations, and an existential binder for index variables. The most novel element is
the left-hand annotation, which guards terms (and right-hand annotations) with a judgment that must
follow from the current context.

1 Introduction

The origin of intersection lay in the analysis of the solvability ofλ-terms; the key early result was that,
in a system with→ and∧, typeability and strong normalization coincide (Coppo et al. 1981). While
pure type assignment is thus undecidable for intersection types, systems that checktypes of lightly-
annotated programs, including systems based on bidirectional typechecking, have had some success.
But constructing a type-checking system from a type assignment system isnot trivial. A key issue is the
design of the annotations. The classic annotation form(e :A), which merely marks a term with a single
type, fails in intersection type systems that must check the same term several times, in different contexts.
Furthermore, in systems with indexed types, we run into problems with the scopeof index variables;
the simple mechanism of a term-level binder fails, because intersections can be formed from types with
different numbers of quantifiers.

For guidance, we can look to logic and the form of hypothetical judgments: inΓ ⊢ ∆ we have, on the
left, assumptionsΓ (implicitly conjoined, because we wish to make several assumptions, each definite);
on the right, we have conclusion∆. In the sequent calculus (Gentzen 1969), the conclusion is plural and
implicitly disjoined: from a conjunction of assumptions, we conclude a disjunction of conclusions. This
conforms to the internal duality of the sequent calculus.

The classic annotation form,e : A, seems to be “on the right”. It is an obligation that constrains the
type ofe: “I insist thate have typeA, and if you cannot satisfy this demand, typechecking should fail.”
(The terme might have some other typeB, but unlessB is a subtype ofA the demand is not met. Also, in
typecheckers that backtrack, like the intersection-type checkers considered in this paper, the requirement
that “typechecking should fail” means that the particular typing subproblemfails—the program could
still typecheck.) Writing(e :A) does not correspond to having an assumptione :A, because that would
let us assume thate has typeA, even if it should not have that type. Further evidence in support of
right-handedness is that several systems with intersection types allow lists oftypes in annotations, and

2 Annotations for Intersection Typechecking

these lists are interpreted disjunctively, consistent with the sequent calculus where lists of conclusions
are interpreted disjunctively.

If the classic annotation(e :A) is “on the right”, what form of annotation is “on the left”? It is hard
to imagine an annotation that is not an obligation, or does not contribute to an obligation (leaving aside
the sort of annotation that is an explicit direction to ignore truth and charge ahead, as with theadmit of
Coq (Coquand et al. 2012) or the%trustme of Twelf (Pfenning et al. 2012)).

We can, however, distinguish annotations that carry an obligation with respect to the term on the
right of the turnstile, such as(e :A), from those that carry an obligation with respect to the assumptions
on theleft of the turnstile. Writing such a “left-hand” annotation says, “I insist on something about the
assumptions you have when you type this term, and if you cannot satisfy me, give up.” Since the point
of an assumption is to help conclude things, the “something about the assumptions” should be about
what those assumptions entail. The most direct entailment is the use of a hypothesis: ifΓ = {Γ1, . . . , Γn}

thenΓ ⊢ Γk for 1 ≤ k ≤ n, suggesting that we should be able to write part of a context as a left-hand
annotation.

The last piece of the puzzle is a way of writing more than one (right-hand) annotation. It suffices to
support a well-behaved special case of the unrulymerge construct(Dunfield 2012).

Contents We start by giving an overview of annotations in intersection type systems (Section 2),
then describe a language whose most notable feature is the left-handguard annotation(Section 3).
Next, we extend that language with indexed types (Section 4); the presence of index variables leads
us to another construct (an existential binder for index variables). Finally, in Section 5, we show
that the features of the extended language—left- and right-hand annotations, plus the merge construct
and the existential binder—collectively subsume thecontextual typing annotationsdeveloped in earlier
work (Dunfield and Pfenning 2004), replacing one complicated construct with several simpler ones.

2 Overview

For languages based on the ordinaryλ-calculus, the usual form of annotation is a single type, either
around a term (e : A) or on a bound variable (λx : A.e). In such languages, the single type corresponds
to typing: exactly one subderivation types each subterme.

In languages with intersection types, the introduction rule for intersection replicates the same term
in each premise:

D1

e :A1

D2

e :A2

e :A1 ∧A2

∧I

BothD1 andD2 have as conclusion a typing fore; in general, neitherAk is a subtype of the other. When
we include contexts (typing assumptionsΓ) in the judgments, we find that the contexts used inD1 and
D2 can differ as well.

D1

Γ ⊢ e :A1

D2

Γ ⊢ e :A2

Γ ⊢ e :A1 ∧A2

∧I

Assume a subtyping system in which the typebits of bitstrings is refined byodd andeven, denoting
bitstrings of odd and even parity (having an odd or even number of1s). Appending a1 (written x ·1)

J. Dunfield 3

should flip the parity, so
(λx.x ·1) : (odd→ even)∧ (even→ odd)

In the typing derivation, we assumex : odd in the first branch of∧I andx : even in the second:

x : odd ⊢ x ·1 : even

· ⊢ (λx.x ·1) : (odd→ even)

x : even ⊢ x ·1 : odd

· ⊢ (λx.x ·1) : (even→ odd)

· ⊢ (λx.x ·1) : (odd→ even)∧ (even→ odd)
∧I

This functionλx.x ·1 is very simple; assuming the goal type(odd→ even) ∧ (even→ odd) is already
known, any reasonable typechecker should handle it without annotations inside the function body. But
more complicated code might require internal annotation. Anyway, programmers should be able to write
unnecessary annotations if they want to.

Here, there is no single type we can write for the use ofx in x ·1: in the left side of the derivation,x
has typeodd, and in the right side,x has typeeven. To handle this issue, several systems with intersection
types allowlists of types in annotations: Forsythe (Reynolds 1988, 1996) and Pierce (1991, p. 21) allow
λ arguments to be annotated with a sequence of types:λx : odd|even.x ·1; the refinement typechecker
SML-CIDRE (Davies 2005) allows terms to be annotated with lists of types, so we could writeλx.(x :

odd,even) ·1.
Intersection type inference is undecidable, but even intersection typecheckingis PSPACE-hard. Un-

fortunately, unlike Hindley-Milner inference, which is intractable in theory but polynomial in practice,
intersection typechecking is expensive in practice (Dunfield 2007a). A system should, therefore, give the
user a rich set of tools—such as annotations—to help make typechecking practical.

Finally, in systems with indexed types and index-level variables, we need to resolve a conflict be-
tween orderly variable scoping and intersection types.

Earlier work (Dunfield and Pfenning 2004) described acontextual typing annotationthat combined
several features:

• contextuality, guarding the type in the annotation with the context in which it makes sense;

• multiplicity, allowing more than one typing to be given, corresponding to different branches of
intersection;

• index variable linking, maintaining index variable scoping even with intersection types.

We now recast the contextual typing annotation, separating it into constituent mechanisms that col-
lectively subsume it. For contextuality, we introduce aguardconstruct. For multiplicity, we use amerge
construct(Dunfield 2012). For index variable linking, we propose an existential binder.

3 A Language with Guard Annotations

We’ll use a small functional language with intersection types, a merge construct, and two kinds of anno-
tations (Figure 1).

3.1 Bidirectional Typechecking

Our type system isbidirectional(Pierce and Turner 2000; Dunfield and Pfenning 2004; Dunfield 2009);
see Dunfield (2009) for background. This technique offers two major benefits over Damas-Milner type

4 Annotations for Intersection Typechecking

Types A,B,C ::= unit |A→ B |A∧ B

Terms e ::= x | () | λx.e | e1 e2
| (e:A) standard (“right-hand”) annotation
| d >:> e guard (“left-hand”) annotation
| e1 ,, e2 merge

Declarations d ::= x :A

Contexts Γ ::= · | Γ,d

Figure 1: Types, terms, declarations and contexts

inference: it works when annotation-free inference is undecidable, and it produces more localized error
messages. The basic idea of bidirectional typechecking is to separate checking of a term against a known
type from synthesis of an unknown type:Γ ⊢ e⇐ A means thate checks against known typeA, while
Γ ⊢ e ⇒ A means thate synthesizes typeA. In the checking judgment,Γ , e andA are inputs to the
typing algorithm. In the synthesis judgment,Γ ande are inputs andA is output.

Bidirectional typechecking does need more type annotations than type inference. However, by fol-
lowing the approach of Dunfield and Pfenning (2004)—checking introduction forms (likeλx.e) and
synthesizing the types of elimination forms (likee1 e2)—annotations are required only on redexes like
(λx.e1)e2.

3.2 Merging

If eithere1 or e2 has typeA, then the mergee1 ,, e2 has typeA. Used in full generality (Dunfield 2012),
the merge can encode a variety of type system features, requires an elaboration-based semantics, and can
lead to ambiguity ife1 ande2 have different operational behaviour. In the present setting, the purpose of
the merge is just to let us annotate the same term in different ways. Used in this restricted fashion, erasing
annotations frome1 ande2 yields the same term; thus,e1 ande2 have the same operational behaviour.

Here, the typing rule for merge (Figure 2) is a checking rule; a synthesis rule is also possible.
Using a merge, the exampleλx.x ·1 from the introduction can be annotated as follows:

λx. (x ·1 : even) ,, (x ·1 : odd)

so it checks against(odd→ even)∧ (even→ odd).

3.3 Guard Annotations

Checking a function against intersection type leads to the function body being checked several times
against different return types, and even under varying typings of thefunction’s argument. The latter
motivatesguards. A guardd >:> e protects a terme (say, the body of a function) with a declaration, so
that the current typing contextΓ must support the guarding declarationd. For variable declarationsx :A,
this amounts toΓ ⊢ x⇐A.

We have both synthesis and checking typing rules for guards, ensuringthat guards can be placed
anywhere the user chooses.

Using guards, we can annotate the exampleλx.x ·1 so that the choice of branch is fully determined:

λx.
(

x : odd >:> (x ·1 : even)
)

,,
(

x : even >:> (x ·1 : odd)
)

J. Dunfield 5

Subtyping

Γ ⊢ A≤A
refl≤

Γ ⊢ B1 ≤A1 Γ ⊢ A2 ≤ B2

Γ ⊢ A1 →A2 ≤ B1 → B2

→≤

Γ ⊢ Ak ≤ B

Γ ⊢ A1 ∧A2 ≤ B
∧Lk≤

Γ ⊢ A≤ B1 Γ ⊢ A≤ B2

Γ ⊢ A≤ B1 ∧ B2

∧R≤

Variables,unit, →

Γ1,x :A,Γ2 ⊢ x⇒A
var

Γ ⊢ ()⇐ unit
unitI

Γ,x :A ⊢ e⇐ B

Γ ⊢ λx.e⇐A→ B
→I

Γ ⊢ e1 ⇒A→ B Γ ⊢ e2 ⇐A

Γ ⊢ e1 e2 ⇒ B
→E

Intersection, subsumption, merge

Γ ⊢ e⇐A1 Γ ⊢ e⇐A2

Γ ⊢ e⇐A1 ∧A2

∧I
Γ ⊢ e⇒A1 ∧A2

Γ ⊢ e⇒Ak

∧Ek

Γ ⊢ e⇒A Γ ⊢ A≤ B

Γ ⊢ e⇐ B
sub

Γ ⊢ ek ⇐A

Γ ⊢ e1 ,, e2 ⇐A
merge⇐k

Γ ⊢ ek ⇒A

Γ ⊢ e1 ,, e2 ⇒A
merge⇒k

Annotations
Γ ⊢ e⇐A

Γ ⊢ (e:A)⇒A
right-anno

Γ ⊢ x⇐A Γ ⊢ e⇐ B

Γ ⊢ x :A >:> e⇐ B
left-anno⇐

Γ ⊢ x⇐A Γ ⊢ e⇒ B

Γ ⊢ x :A >:> e⇒ B
left-anno⇒

Figure 2: Subtyping and typing rules

3.4 Free Annotation

Given a terme that can be typed with the bidirectional rules—that is, a term that already hasenough
annotations for the typechecker—the user can freely choose to put in moreannotations, either right-
hand annotations or guards. If different annotations are needed in thesubderivations of∧I, the user can
duplicate the term with a merge.

4 Extension to Indexed Types with Index Variables

The above constructs collectively yield annotations that work when terms are checked repeatedly un-
der different contexts. But this does not subsume contextual typing annotations (Dunfield and Pfenning
2004), which were designed in the setting of a system with indexed types as well as intersection (and
union) types, and treat index-level variablesa, b differently from term-level variables (x, y, etc.).

After setting the stage with some background on indexed types, we look at twoalternatives in lan-

6 Annotations for Intersection Typechecking

Index variables a,b

Index sorts γ ::= int | · · ·

Index expressions i ::= a | · · ·

Index propositions P ::= i
.
= i | · · ·

Types A,B,C ::= · · · | τ(i) | Πa:γ.A

Declarations d ::= · · · | a : γ

Figure 3: Indexed types

guage design and show how our approach works for both; for one ofthe alternatives, one more language
construct is needed.

4.1 Indexed Types

The kind of indexed types we consider here is exemplified by DML (Xi and Pfenning 1999; Xi 1998),
and some of its descendants (Dunfield and Pfenning 2003, 2004; Dunfield 2007b), which added several
features, most notably intersection and union types. In these systems, users can index datatypes with
index expressionsfrom a constraint domain with decidable equality (at least). The canonical example of
such a domain is linear inequalities over integers; dimensions (metres, seconds, etc.) form another useful
domain (Dunfield 2007a).

In contrast to dependent types, indices do not appear in termse (except within annotations) and
disappear completely during compilation; termse can never appear in indices. Indexed type systems are
parametric in the index domain.

We mostly follow (Figure 3) the notation of Dunfield and Pfenning (2004). Index expressionsi have
index sortsγ (e.g.int or dim); a andb are index-level variables standing for index expressions;P stands
for propositions over index expressions, such as equality

.
=. Types are extended with indexed datatypes

τ(i) (whereτ is some inductive datatypelist, tree, etc.) and universal quantification over index variables.
(The use ofΠ is traditional and, to readers used to dependent types, has the advantage of suggesting the
appropriate quantifier, with the disadvantage of being easily confused witha genuine dependentΠ.) In
practice, we also need existential quantificationΣa:γ.A, which we omit since it has no effect on the
techniques described in this paper.

We assume that the constraint domain defines when two kinds of judgments are derivable: Γ ⊢ P

(index assumptions inΓ entail index propositionP) and Γ ⊢ i : γ (index expressioni, which might
include index variables declared inΓ , has index sortγ). The only mandatory syntax in an index domain
is

.
=, which is needed for subtyping. In practice, the index expressionsi might include literal integers,

i+ i, i− i, and so on; the index propositions might includei < i, i≤ i, etc.

4.2 Indexed Types Without Binders

The most syntactically economical formulation of indexed types does not extend the term syntax at all
(apart from the extension of the type language, which changes the syntax of annotations). Its subtyping
and typing rules are shown in Figure 4. Implicitly, we assume thatΠR≤ andΠI rename the variable
introduced into the context if it already occurs inΓ .

Is that the end of the story? No. We have actually introduced a serious problem: What does it mean
to mention an index variablea in an annotation when there are no term-level binders? The only thing

J. Dunfield 7

Γ ⊢ i1
.
= i2

Γ ⊢ τ(i1)≤ τ(i2)
iLR≤

Γ ⊢ i : γ Γ ⊢ [i/a]A≤ B

Γ ⊢ Πa:γ.A≤ B
ΠL≤

Γ,b : γ ⊢ A≤ B

Γ ⊢ A≤ Πb:γ.B
ΠR≤

Γ,a : γ ⊢ e⇐A

Γ ⊢ e⇐ Πa:γ.A
ΠI

Γ ⊢ e⇒ Πa:γ.A Γ ⊢ i : γ

Γ ⊢ e⇐ [i/a]A
ΠE

Figure 4: Subtyping and typing for indexed types (without term-level binders)

Γ ⊢ i : γ Γ ⊢ [i/b]e⇐A

Γ ⊢ some b : γ. e⇐A

Γ ⊢ i : γ Γ ⊢ [i/b]e⇒A

Γ ⊢ some b : γ. e⇒A

Figure 5: Typing for thesome binder

that bindsa is Π, and the scope of the binderΠa:γ.A is justA. And what if the implicit condition in
ΠR≤ andΠI is triggered and we have to rename the variable? The user would be unableto refer to the
variable in annotations.

One way to solve this is to introduce an odd sort of binding construct,some a ′ : γ. e, which binds
its variablea ′ to some unwritten index expression—one chosen by the typechecker to makeeverything
work out. An example:

(

λx. . . .(some b : γ. x : list(b∗2) >:> e) . . .
)

⇐ Πa:int. list(a∗2)→ list(a)

Within the inner terme, we can write (right-hand) annotations that mentionb: the typechecker chooses
b to bea, which satisfies the guard conditionx⇐ list(b∗2).

The typing rules in Figure 5 substitute an indexi for b in e, wherei is well-sorted in the actual
contextΓ . Thus, all annotations that mentionb will be renamed so they make sense underΓ . These rules
do not requirei to be a variable: the following code is acceptable, choosingi to bea∗2.

(

λx. . . .(some b : γ. x : list(b) >:> e) . . .
)

⇐ Πa:int. list(a∗2)→ list(a)

Non-renaming substitutions achieve a measure of robustness: the type being checked against can, in
some circumstances, change without requiring changes to internal annotations.

4.3 Indexed Types With Binders

Alternatively, we can have an explicit term-level introduction form forΠa:γ.A:

Γ,b : γ ⊢ e⇐A

Γ ⊢ Λb : γ. e⇐A
ΠI-explicit

Dunfield and Pfenning (2004) did not take this route, because typing would fail for intersections of
differently-quantified types. For example, the first conjunct of(Πa:γ.A → A ′) ∧ (B → B ′) can type
a term if it has a binder (fora), but the second conjunct cannot type a term with a binder (sinceB→ B ′

has noΠ). With our merge construct, we can write the term twice, with and without a binder.

8 Annotations for Intersection Typechecking

(· ⊢ A) . (Γ ⊢ A)
.-empty

Γ ⊢ i : γ0 ([i/a]Γ0 ⊢ [i/a]A0) . (Γ ⊢ A)

(a:γ0, Γ0 ⊢ A0) . (Γ ⊢ A)
.-ivar

Γ ⊢ Γ(x)≤ B0 (Γ0 ⊢ A0) . (Γ ⊢ A)

(x:B0, Γ0 ⊢ A0) . (Γ ⊢ A)
.-pvar

(Γ0 ⊢ A0) . (Γ ⊢ A) Γ ⊢ e⇐A

Γ ⊢ (e : . . . ,(Γ0 ⊢ A0), . . .)⇒A
ctx-anno

Figure 6: Rules for contextual typing annotations

trans(x) = x

trans(()) = ()

trans(λx.e) = λx. trans(e)

trans(e1 e2) = trans(e1) trans(e2)

trans(e : (Γ1⊢A1), . . . ,(Γn⊢An)) = trans(Γ1 ⊢ A1) ,, . . . ,, trans(Γn ⊢ An)

wheretrans(d1, . . . ,dn ⊢ A) = d1 >:> . . .dn >:> (trans(e):A)

Figure 7: Translating contextual typing annotations

4.4 Free Annotation Revisited

Whether we havesome binders orΛ binders, we maintain the property mentioned in Section 3.4: the
user can always add an extra annotation if desired.

• If we havesome, the user will need to add asome binder for any index variable mentioned in
annotations (left- and right-hand).

• If we haveΛ and ruleΠI-explicit instead ofΠI, the user must already have put in theΛ forms, and
can refer to those bound index variables in annotations.

5 Comparison to Contextual Typing Annotations

We briefly review contextual typing annotations, introduced by Dunfield and Pfenning (2004). Such an
annotation has a listAs of typings(Γ1 ⊢ A1, . . . , Γn ⊢ An). The typing rulectx-anno (Figure 6) chooses
a typingΓ0 ⊢ A0 and then uses acontextual subtyping relation(Γ0 ⊢ A0) . (Γ ⊢ A), which is derivable
whenΓ is at least as strong asΓ0, that is, whenΓ satisfies all assumptions listed inΓ0. Declarations in
Γ0 thus should correspond to a sequence of guard annotations. Declarations of index variables inΓ0,
however, are treated differently: the rule.-ivar behaves like the typing rules for thesome binder (Figure
5), effectively binding variables declared inΓ0 so they can be used inA0.

In hindsight, contextual typing annotations combine all the mechanisms in this paper—guard an-
notations, standard annotations, and merges: program variable declarationsx : A in Γ0 correspond to a
sequence of guard annotations, the typeA0 corresponds to a standard annotation, and the multiplicity of
typings corresponds to merges. Translating contextual typing annotations(Figure 7) preserves typing:

Theorem 1 (Encoding Contextual Typing Annotations).
If Γ ⊢ e⇐A (resp.⇒) with rulectx-anno available thenΓ ⊢ trans(e ′)⇐A (resp.⇒) without applying
rule ctx-anno.

J. Dunfield 9

Proof. By induction on the derivation. All cases are straightforward except when ctx-anno concludes
the derivation.

In that case, apply the i.h. resulting intrans(e ′0). This application ofctx-anno uses one of the con-
textual typings, say(Γk ⊢ Ak) whereΓk = d1, . . . ,dn; thekth branch of the merge created bytrans(−)

is d1 >:> . . .dm >:> (trans(e ′0):A).
By rule right-anno, Γ ⊢ trans(e ′0)A⇒A.
By m applications ofleft-anno,

Γ ⊢ d1 >:> . . .dm >:> (trans(e ′0):A) ⇒ A

Finally, applymerge⇒ as needed to pick out thekth branch of the merge created bytrans(−).

Given that we subsume contextual typing annotations, which approach should be preferred when
designing a language? It is hard to give a universal answer. Generally speaking, simpler constructs are
better than complicated ones, but fewer constructs are better than many. Bythe former criterion, the
mechanisms proposed in this paper win; by the latter, contextual typing annotations win. The particular
design setting matters: if we need some of these mechanisms already, their marginal cost is reduced.
This was the case in the work that directly inspired this paper, elaboration-based typing of intersections
and unions (Dunfield 2012), where the merge construct was already present.

6 Comparison to Contextual Types

There are several approaches to typing open code. In one such approach, contextual modal type the-
ory (Nanevski et al. 2008), the contextual typeA[Ψ] represents data of typeA closed under a contextΨ.
Providing a substitution for the variables inΨ allows a term of typeA[Ψ] to yield a term of typeA[·],
closed under the empty context—that is, a closed term.

Contextual types appear to subsume both guard annotations and our use of merges. For example,
instead of the guard annotations inλx.

(

x : odd >:> (x ·1 : even)
)

,,
(

x : even >:> (x ·1 : odd)
)

we could
write

λx. let r=(y ·1) : even[y : odd]∧ odd[y : even] in
r[x/y]

Checking(y ·1) against the first conjunct of the (ordinary right-hand) annotation,even[y : odd], shows
that (y ·1) has typeeven wheny is substituted with a value of typeodd. The second conjunct is sym-
metric. In the body of thelet, we plug inx. When we check the whole function against(odd→ even)∧

(even→ odd), the variablex will have typeodd in one subderivation of∧I, and typeeven in the other.
In each subderivation, using intersection elimination givesr a contextual type that can be eliminated by
substitutingx for y.

Contextual types are versatile. For example, they enable us to lift the bindingof r outside the func-
tion, and instantiater with different concrete contexts (different substitutions fory : even) at several
program points. Extending typecheckers and compilers with such types, however, is nontrivial (Pientka
2008). Introducing contextual types just to support type annotations seems extravagant. If contextual
types are already available in a language, of course, it could make senseto encode the annotation mech-
anisms of this paper as contextual types, or for programmers to write contextual types directly.

10 Annotations for Intersection Typechecking

Acknowledgments

Thanks to the anonymous ITRS reviewers, for their comments and suggestions; Neel Krishnaswami, for
discussions and encouragement; Frank Pfenning, for so many things.

References

M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Functional characters of solvable terms.Zeitschrift f.
math. Logik und Grundlagen d. Math., 27:45–58, 1981.

Thierry Coquand, Ǵerard Huet, et al. Coq homepage, 2012. http://coq.inria.fr/.

Rowan Davies.Practical Refinement-Type Checking. PhD thesis, Carnegie Mellon University, 2005. CMU-
CS-05-110.

Joshua Dunfield. Refined typechecking with Stardust. InProgramming Languages meets Program Verifica-
tion (PLPV ’07), 2007a.

Joshua Dunfield.A Unified System of Type Refinements. PhD thesis, Carnegie Mellon University, 2007b.
CMU-CS-07-129.

Joshua Dunfield. Greedy bidirectional polymorphism. InML Workshop, pages 15–26, 2009.http://www.
cs.cmu.edu/~joshuad/papers/poly/.

Joshua Dunfield. Elaborating intersection and union types. InICFP, 2012. To appear, draft available from
http://www.cs.cmu.edu/~joshuad/papers/intcomp.

Joshua Dunfield and Frank Pfenning. Type assignment for intersections and unions in call-by-value lan-
guages. InFound. Software Science and Computation Structures (FoSSaCS ’03), pages 250–266, 2003.

Joshua Dunfield and Frank Pfenning. Tridirectional typechecking. InPrinciples of Programming Languages,
pages 281–292, 2004.

Gerhard Gentzen. Investigations into logical deduction. In M. Szabo, editor,Collected papers of Gerhard
Gentzen, pages 68–131. North-Holland, 1969.

Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type theory.ACM Trans.
Computational Logic, 9(3), 2008.

Frank Pfenning, Carsten Schürmann, et al. Twelf homepage, 2012.http://twelf.org/wiki/Main_
Page.

Brigitte Pientka. A type-theoretic foundation for programming with higher-order abstract syntax and first-
class substitutions. InPrinciples of Programming Languages, pages 371–382, 2008.

Benjamin C. Pierce.Programming with Intersection Types and Bounded Polymorphism. PhD thesis, Carnegie
Mellon University, 1991. Technical Report CMU-CS-91-205.

Benjamin C. Pierce and David N. Turner. Local type inference.ACM Trans. Programming Languages and
Systems, 22:1–44, 2000.

John C. Reynolds. Preliminary design of the programming language Forsythe. Technical Report CMU-
CS-88-159, Carnegie Mellon University, 1988.http://doi.library.cmu.edu/10.1184/OCLC/
18612825.

John C. Reynolds. Design of the programming language Forsythe.Technical Report CMU-CS-96-146,
Carnegie Mellon University, 1996.

Hongwei Xi. Dependent Types in Practical Programming. PhD thesis, Carnegie Mellon University, 1998.

Hongwei Xi and Frank Pfenning. Dependent types in practical programming. InPrinciples of Programming
Languages, pages 214–227, 1999.

http://www.cs.cmu.edu/~joshuad/papers/poly/
http://www.cs.cmu.edu/~joshuad/papers/poly/
http://www.cs.cmu.edu/~joshuad/papers/intcomp
http://twelf.org/wiki/Main_Page
http://twelf.org/wiki/Main_Page
http://doi.library.cmu.edu/10.1184/OCLC/18612825
http://doi.library.cmu.edu/10.1184/OCLC/18612825

	Introduction
	Overview
	A Language with Guard Annotations
	Bidirectional Typechecking
	Merging
	Guard Annotations
	Free Annotation

	Extension to Indexed Types with Index Variables
	Indexed Types
	Indexed Types Without Binders
	Indexed Types With Binders
	Free Annotation Revisited

	Comparison to Contextual Typing Annotations
	Comparison to Contextual Types

