Annotationsfor |nter section Typechecking

Joshua Dunfield

Max Planck Institute for Software Systems
Kaiserslautern and Saatlwken, Germany

joshua@mpi-sws.org

In functional programming languages, the classic form ofadation is a single type constraint on
a term. Intersection types add complications: a single tmay have to be checked several times
against different types, in different contexts, requiramgotation with several types. Moreover, it is
useful (in some systems, necessary) to indicate the cantesttich each such type is to be used.

This paper explores the technical design space of annosaticsystems with intersection types.
Earlier work (Dunfield and Pfenning 2004) introduczshtextual typing annotationgrhich we now
tease apart into more elementary mechanisms: a “right hamadtation (the standard form), a “left
hand” annotation (the context in which a right-hand annarais to be used), aergethat allows
for multiple annotations, and an existential binder forexd/ariables. The most novel element is
the left-hand annotation, which guards terms (and riginidhennotations) with a judgment that must
follow from the current context.

1 Introduction

The origin of intersection lay in the analysis of the solvabilitydeierms; the key early result was that,
in a system with— and/\, typeability and strong normalization coincide (Coppo et al. 1981). While
pure type assignment is thus undecidable for intersection types, systentheicktypes of lightly-
annotated programs, including systems based on bidirectional typechebkive had some success.
But constructing a type-checking system from a type assignment systentivial. A key issue is the
design of the annotations. The classic annotation farmA), which merely marks a term with a single
type, fails in intersection type systems that must check the same term sevesitimiéferent contexts.
Furthermore, in systems with indexed types, we run into problems with the séopdex variables;
the simple mechanism of a term-level binder fails, because intersectiong ¢éarmied from types with
different numbers of quantifiers.

For guidance, we can look to logic and the form of hypothetical judgmenistim we have, on the
left, assumption§ (implicitly conjoined, because we wish to make several assumptions, eanhajefi
on the right, we have conclusiah In the sequent calculus (Gentzen 1969), the conclusion is plural and
implicitly disoined: from a conjunction of assumptions, we conclude a disjunction oflesioas. This
conforms to the internal duality of the sequent calculus.

The classic annotation forma,: A, seems to be “on the right”. It is an obligation that constrains the
type ofe: “l insist thate have typeA, and if you cannot satisfy this demand, typechecking should fail.”
(The terme might have some other tyde but unless is a subtype oA the demand is not met. Also, in
typecheckers that backtrack, like the intersection-type checkergleoed in this paper, the requirement
that “typechecking should fail” means that the particular typing subprolfiééisi—the program could
still typecheck.) Writing(e : A) does not correspond to having an assumptioA., because that would
let us assume that has typeA, even if it should not have that type. Further evidence in support of
right-handedness is that several systems with intersection types allow ligisesfin annotations, and

In pre-proceedings of:
ITRS 2012 (6th Workshop on Intersection Types and Related Systems)

2 Annotations for Intersection Typechecking

these lists are interpreted disjunctively, consistent with the sequent calebiere lists of conclusions
are interpreted disjunctively.

If the classic annotatiofe : A) is “on the right”, what form of annotation is “on the left"? It is hard
to imagine an annotation that is not an obligation, or does not contribute toligatan (leaving aside
the sort of annotation that is an explicit direction to ignore truth and chdrgada as with thedmit of
Coq (Coquand et &l. 2012) or thierustme of Twelf (Pfenning et al. 2012)).

We can, however, distinguish annotations that carry an obligation witlecesp the term on the
right of the turnstile, such d% : A), from those that carry an obligation with respect to the assumptions
on theleft of the turnstile. Writing such a “left-hand” annotation says, “I insist on gbing about the
assumptions you have when you type this term, and if you cannot satisfyiveeyy” Since the point
of an assumption is to help conclude things, the “something about the assushsimuld be about
what those assumptions entail. The most direct entailment is the use of adsigoifl" ={I1,..., T}
thenT + Ty for 1 < k < n, suggesting that we should be able to write part of a context as a left-hand
annotation.

The last piece of the puzzle is a way of writing more than one (right-harmitation. It suffices to
support a well-behaved special case of the unmugéyge construc{Dunfield/2012).

Contents We start by giving an overview of annotations in intersection type systeesti¢®[2),
then describe a language whose most notable feature is the leftguand annotation(Section[B).
Next, we extend that language with indexed types (Secfion 4); the peeséniedex variables leads
us to another construct (an existential binder for index variables). llfzina Section[$, we show
that the features of the extended language—Ileft- and right-hand annstgpios the merge construct
and the existential binder—collectively subsume ¢batextual typing annotatiordeveloped in earlier
work (Dunfield and Pfenning 2004), replacing one complicated corisiitit several simpler ones.

2 Overview

For languages based on the ordinargalculus, the usual form of annotation is a single type, either
around a termg(: A) or on a bound variable\k : A.e). In such languages, the single type corresponds
to typing: exactly one subderivation types each subterm

In languages with intersection types, the introduction rule for intersecticages the same term
in each premise:

D D

e A e A
1 2/\|

€2A1/\A2

Both 2, and 2, have as conclusion a typing ferin general, neitheAy is a subtype of the other. When
we include contexts (typing assumptiofsin the judgments, we find that the contexts use&jnand
2, can differ as well.

D D
'Ee:A;q N'Fe:A
'Fe:A1 NAy

Assume a subtyping system in which the tyges of bitstrings is refined bydd andeven, denoting
bitstrings of odd and even parity (having an odd or even numbés)fAppending a (writtenx - 1)

J. Dunfield 3

should flip the parity, so
(Ax.x-1) : (odd — even) /A (even — odd)

In the typing derivation, we assume odd in the first branch of\l andx : even in the second:

x:odd F x-1:even Xx:even - x-1:o0dd
-+ (Ax.x-1): (odd — even) -F (Ax.x-1) : (even — odd)
-F (Ax.x-1) : (odd — even) /\ (even — odd)

A\

This functionAx.x - 1 is very simple; assuming the goal typedd — even) /A (even — odd) is already
known, any reasonable typechecker should handle it without annctatiside the function body. But
more complicated code might require internal annotation. Anyway, prograsrsheuld be able to write
unnecessary annotations if they want to.

Here, there is no single type we can write for the use iof x - 1: in the left side of the derivatiorx,
has typeodd, and in the right sidex has typesven. To handle this issue, several systems with intersection
types allowlists of types in annotations: Forsythe (Reynalds 1988, 1996) and Pie9&é (p. 21) allow
A arguments to be annotated with a sequence of typesodd|even.x - 1; the refinement typechecker
SML-CIDRE (Davies 2005) allows terms to be annotated with lists of types,esoonld writeAx. (x :
odd,even) - 1.

Intersection type inference is undecidable, but even intersectiorchgumkings PSPACE-hard. Un-
fortunately, unlike Hindley-Milner inference, which is intractable in theouy fpolynomial in practice,
intersection typechecking is expensive in practice (Dunfield 2007ays#&® should, therefore, give the
user a rich set of tools—such as annotations—to help make typecheckicteal.

Finally, in systems with indexed types and index-level variables, we neasbtive a conflict be-
tween orderly variable scoping and intersection types.

Earlier work (Dunfield and Pfenning 2004) describecbatextual typing annotatiothat combined
several features:

e contextuality guarding the type in the annotation with the context in which it makes sense;

e multiplicity, allowing more than one typing to be given, corresponding to differesmdires of
intersection;,

¢ index variable linkingmaintaining index variable scoping even with intersection types.

We now recast the contextual typing annotation, separating it into constineshanisms that col-
lectively subsume it. For contextuality, we introducguaard construct. For multiplicity, we useraerge
construct(Dunfield 2012). For index variable linking, we propose an existentialdain

3 A Language with Guard Annotations

We’'ll use a small functional language with intersection types, a merge cehsand two kinds of anno-
tations (Figuréell).
3.1 Bidirectional Typechecking

Our type system ibidirectional (Pierce and Turngr 2000; Dunfield and Pfenning 2004; Dunfield 2009
see Dunfield (2009) for background. This technique offers two majoefits over Damas-Milner type

4 Annotations for Intersection Typechecking

Types A,B,C == unit|A—>B|AAB

Terms e = x| O]Ax.elere;
| (e: A) standard (“right-hand”) annotation
|[d>:>e guard (“left-hand”) annotation
le1y e merge

Declarations d == x:A

Contexts Naz=-|NLd

Figure 1: Types, terms, declarations and contexts

inference: it works when annotation-free inference is undecidabteitgproduces more localized error
messages. The basic idea of bidirectional typechecking is to separakenchef a term against a known
type from synthesis of an unknown typé e &< A means that checks against known typ®, while

I' - e = A means that synthesizes typd. In the checking judgment;, e and A are inputs to the
typing algorithm. In the synthesis judgmefitande are inputs and\ is output.

Bidirectional typechecking does need more type annotations than typerio&erHowever, by fol-
lowing the approach df Dunfield and Pfenning (2004)—checking inttdn forms (like Ax.e) and
synthesizing the types of elimination forms (likge;)—annotations are required only on redexes like
(Ax.e1)ey.

3.2 Merging

If either e; or e; has typeA, then the merge; ,, e; has typeA. Used in full generality (Dunfield 2012),
the merge can encode a variety of type system features, requires araétai-based semantics, and can
lead to ambiguity ife; ande, have different operational behaviour. In the present setting, thpoparof
the merge is just to let us annotate the same term in different ways. Used iedtinisted fashion, erasing
annotations frone; ande, yields the same term; thus, ande, have the same operational behaviour.
Here, the typing rule for merge (Figurk 2) is a checking rule; a synthalgissralso possible.
Using a merge, the example..x - 1 from the introduction can be annotated as follows:

Ax. (x-1:even), (x-1:0dd)

so it checks againgbdd — even) A\ (even — odd).

3.3 Guard Annotations

Checking a function against intersection type leads to the function bodyg bbiecked several times
against different return types, and even under varying typings ofuihetion’s argument. The latter
motivatesguards A guardd >:> e protects a terne (say, the body of a function) with a declaration, so
that the current typing contektmust support the guarding declaratidnFor variable declarations: A,
this amounts td' - x < A.

We have both synthesis and checking typing rules for guards, enghahguards can be placed
anywhere the user chooses.

Using guards, we can annotate the exanialex - 1 so that the choice of branch is fully determined:

AX. (X:odd >:> (x-1 :even)),, (x:even >:> (x-1 :odd))

J. Dunfield 5

Subtypin
——— 1€
- A<A o FFA1%A2§B]—>BZ
I'-Ar<B ' A <Bj I'-EA<B;
ALy < ARZ
- A;ANA<B 'HA<B;AB;
Variables,unit, —
var ——— unitl
MNyx:AALhFx=A ' OO < unit
[x:AFe&B '-eg=A—>B ey, &EA
—l —E
'EAx.e <A —B 'Hees2=B
Intersection, subsumption, merge
'ke& Aq 'Fe& A | r|—€:>A1/\A2/\E
FEecAlAA,; M e= Ag «
N'-e=A '-A<B ey & A Fex=A
sub merge& merge=ry
'He&B N'-e,e0&EA '-e,e0=A
Annotations
NFe&sA)
right-anno
'c(e:A)=A
'Ex<A 're&B ''Ex<A 'e=B
left-anno< left-anno=
I'Ex:A>:>e&B 'Ex:A>:>e=B

Figure 2. Subtyping and typing rules

3.4 Free Annotation

Given a terme that can be typed with the bidirectional rules—that is, a term that alreadgrmasgyh

annotations for the typechecker—the user can freely choose to put inanoodations, either right-
hand annotations or guards. If different annotations are needed sultickerivations of\l, the user can
duplicate the term with a merge.

4 Extension to Indexed Typeswith Index Variables

The above constructs collectively yield annotations that work when terenshacked repeatedly un-
der different contexts. But this does not subsume contextual typingiations (Dunfield and Pfenning
2004), which were designed in the setting of a system with indexed typeslhasaintersection (and
union) types, and treat index-level variabtes differently from term-level variable(y, etc.).

After setting the stage with some background on indexed types, we look atltigvoatives in lan-

6 Annotations for Intersection Typechecking

Index variables a,b

Index sorts Y i= int|---

Index expressions iu=al--

Index propositions Pu=i=il---

Types A,B,C z:= ---|t(i) | TTary. A
Declarations d:=-]a:y

Figure 3: Indexed types

guage design and show how our approach works for both; for otleecflternatives, one more language
construct is needed.

4.1 Indexed Types

The kind of indexed types we consider here is exemplified by DML _(Xi diethifing 1999; Xi 1998),
and some of its descendants (Dunfield and Pfenning 2003, 2004; pi@®i@7b), which added several
features, most notably intersection and union types. In these systens cagendex datatypes with
index expressionfsom a constraint domain with decidable equality (at least). The canoniaaige of
such adomain is linear inequalities over integers; dimensions (metres, seetmyform another useful
domain (Dunfield 2007a).

In contrast to dependent types, indices do not appear in ter(@gcept within annotations) and
disappear completely during compilation; terensan never appear in indices. Indexed type systems are
parametric in the index domain.

We mostly follow (Figuré B) the notation bf Dunfield and Pfenning (2004)elnexpressionshave
index sortsy (e.g.int or dim); a andb are index-level variables standing for index expressiBrggands
for propositions over index expressions, such as equélityypes are extended with indexed datatypes
T(1) (wheret is some inductive datatypit, tree, etc.) and universal quantification over index variables.
(The use of T is traditional and, to readers used to dependent types, has the advahsaggesting the
appropriate quantifier, with the disadvantage of being easily confusedawjiémuine dependeht) In
practice, we also need existential quantificatlomy. A, which we omit since it has no effect on the
techniques described in this paper.

We assume that the constraint domain defines when two kinds of judgmentsrizabb: ' - P
(index assumptions it entail index propositior?) andTl" - i: vy (index expression, which might
include index variables declaredlinhas index sort). The only mandatory syntax in an index domain
is =, which is needed for subtyping. In practice, the index expressiomght include literal integers,
i+1, i—1, and so on; the index propositions might include i, 1 < 1, etc.

4.2 Indexed Types Without Binders

The most syntactically economical formulation of indexed types does natdxte term syntax at all
(apart from the extension of the type language, which changes thexoyfrdanotations). Its subtyping
and typing rules are shown in Figure 4. Implicitly, we assume HR& andTTl rename the variable
introduced into the context if it already occurslin

Is that the end of the story? No. We have actually introduced a seriobkeproWhat does it mean
to mention an index variable in an annotation when there are no term-level binders? The only thing

J. Dunfield 7

i =1 NeEi:y M- [i/a]A <B Nb:yHA<B
. — ILR< L< MTR<
' t(i) <1(ip) I'ETay.A<B ' A<TIb:y.B

Na:yFe& A - N'ce=Tlay.A N=i:y
N'ke&Tlay. A ' e&[i/dlA

Figure 4: Subtyping and typing for indexed types (without term-level binders)

Ny Ik [i/ble <= A iy I'kli/ble= A
' someb:y.e&< A '+ someb:y.e= A

Figure5: Typing for thesome binder

that bindsa is TT, and the scope of the bindBla:y. A is justA. And what if the implicit condition in
TTR< andTTl is triggered and we have to rename the variable? The user would be twoabfer to the
variable in annotations.

One way to solve this is to introduce an odd sort of binding constsooige a’ : y. e, which binds
its variablea’ to some unwritten index expression—one chosen by the typechecker toenerkthing
work out. An example:

(Ax....(someb:y.x:list(b*2) >:>e)...) & Maint.list(a*2) — list(a)

Within the inner terme, we can write (right-hand) annotations that mentiorthe typechecker chooses
b to bea, which satisfies the guard conditian= list(b % 2).

The typing rules in Figurg]5 substitute an indiefor b in e, wherei is well-sorted in the actual
contextl". Thus, all annotations that mentibrwill be renamed so they make sense uddeFhese rules
do not require to be a variable: the following code is acceptable, choosiogea * 2.

(?\x. ...(someb:vy.x:list(b) >:> e)...) & Tlacint. list(ax2) — list(a)

Non-renaming substitutions achieve a measure of robustness: the tygecheitked against can, in
some circumstances, change without requiring changes to internal tonsta

4.3 Indexed TypesWith Binders

Alternatively, we can have an explicit term-level introduction formffary. A:

Nb:yFe&sA
TFAb:y.e = A

TTl-explicit

Dunfield and Pfenning (2004) did not take this route, because typinddwail for intersections of
differently-quantified types. For example, the first conjunctidti:y.A — A’) A (B — B’) can type
a term if it has a binder (foa), but the second conjunct cannot type a term with a binder ($ineeB’
has ndlT). With our merge construct, we can write the term twice, with and without a hinde

8 Annotations for Intersection Typechecking

iy ([i/alTy F [i/alAg) S (THA)
S_empty <—|var
(aryo,To FAg) S (THA)

I'ET(x) < By (rol—Ao) (T A)
(X Bo,ro F Ao) (F H A)

(FA)S(THEA)

<-pvar

MFA)S(THFA) ThesA
N'e(e:...,(To F Ag),y...) = A

ctx-anno

Figure 6: Rules for contextual typing annotations

trans(x) = x
trans(Q)) = O
trans(Ax.e) = Ax.trans(e)
trans(e1 ey) = trans(eq)trans(ey)
trans(e: (MFA7),...,(ThFAL)) = trans(lT F Aq),, ..., trans(I F AL)

wheretrans(di,...,dqn F A)=d; >:>...dn >:> (trans(e) : A)

Figure 7: Translating contextual typing annotations

4.4 Free Annotation Revisited

Whether we haveome binders orA binders, we maintain the property mentioned in Sedfioh 3.4: the
user can always add an extra annotation if desired.

o If we havesome, the user will need to add some binder for any index variable mentioned in
annotations (left- and right-hand).

¢ If we haveA and rulelTl-explicit instead offTl, the user must already have put in thdorms, and
can refer to those bound index variables in annotations.

5 Comparison to Contextual Typing Annotations

We briefly review contextual typing annotations, introduced by DunfiettRfienning|(2004). Such an
annotation has a lists of typings(Iy - Aq,...,I F Ayn). The typing rulectx-anno (Figurel6) chooses
a typingl, - Ap and then useseontextual subtyplng relatiofiy - Ag) < (I' F A), which is derivable
whenT is at least as strong a§, that is, when™ satisfies all assumptions listedlip. Declarations in
Io thus should correspond to a sequence of guard annotations. Dedsarationdex variables iy,
however, are treated differently: the rufeivar behaves like the typing rules for tkeme binder (Figure
[B), effectively binding variables declaredlinso they can be used i.

In hindsight, contextual typing annotations combine all the mechanisms in théis-pgpard an-
notations, standard annotations, and merges: program variable tiealska A in Ty correspond to a
sequence of guard annotations, the tyyecorresponds to a standard annotation, and the multiplicity of
typings corresponds to merges. Translating contextual typing annotéignse[7) preserves typing:
Theorem 1 (Encoding Contextual Typing Annotations)

If '+ e & A (resp.=) with rule ctx-anno available ther™ |- trans(e’) & A (resp.=) without applying
rule ctx-anno.

J. Dunfield 9

Proof. By induction on the derivation. All cases are straightforward excepnwebx-anno concludes
the derivation.

In that case, apply the i.h. resultingtirans(e}). This application ottx-anno uses one of the con-
textual typings, sayl F Ay) wherely = dy,...,d,; thekth branch of the merge created tyins(—)
isdy>:>...dpy >:> (trans(e)) : A).

By ruleright-anno, I" - trans(e))A = A.

By m applications ofeft-anno,

Mk dy>:>...dy >:> (trans(ep) : A) = A

Finally, applymerge= as needed to pick out theh branch of the merge created tyyins(—). O

Given that we subsume contextual typing annotations, which approacitdsbe preferred when
designing a language? It is hard to give a universal answer. Gregpaaking, simpler constructs are
better than complicated ones, but fewer constructs are better than martire Byrmer criterion, the
mechanisms proposed in this paper win; by the latter, contextual typing déionstevin. The particular
design setting matters: if we need some of these mechanisms already, theiraneogins reduced.
This was the case in the work that directly inspired this paper, elaboratisedityping of intersections
and unions (Dunfield 2012), where the merge construct was alreadgmit

6 Comparison to Contextual Types

There are several approaches to typing open code. In one suntaappcontextual modal type the-
ory (Nanevski et al. 2008), the contextual typ€¥] represents data of type closed under a conte#t
Providing a substitution for the variablesYhallows a term of typeA [W] to yield a term of typeA [-],
closed under the empty context—that is, a closed term.

Contextual types appear to subsume both guard annotations and ourmeegges. For example,
instead of the guard annotationsAR. (x:odd >:> (x-1:even)), (x:even>:> (x-1:0dd)) we could
write

Ax. letr=(y-1):even[y:odd] Aodd[y:evenlin
rIx/y]

Checking(y - 1) against the first conjunct of the (ordinary right-hand) annotatieen [y : odd], shows
that (y - 1) has typeeven wheny is substituted with a value of typgld. The second conjunct is sym-
metric. In the body of théet, we plug inx. When we check the whole function agaifstid — even) A
(even — odd), the variablex will have typeodd in one subderivation of\l, and typeeven in the other.
In each subderivation, using intersection elimination givascontextual type that can be eliminated by
substitutingx for y.

Contextual types are versatile. For example, they enable us to lift the binflingutside the func-
tion, and instantiate with different concrete contexts (different substitutions doreven) at several
program points. Extending typecheckers and compilers with such typesyer, is nontriviall (Pientka
2008). Introducing contextual types just to support type annotaticsrmsextravagant. If contextual
types are already available in a language, of course, it could maketsesiseode the annotation mech-
anisms of this paper as contextual types, or for programmers to write taaltepes directly.

10 Annotations for Intersection Typechecking

Acknowledgments

Thanks to the anonymous ITRS reviewers, for their comments and suggedtieel Krishnaswami, for
discussions and encouragement; Frank Pfenning, for so many things.

References

M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Functionahi@acters of solvable term&eitschrift f.
math. Logik und Grundlagen d. Mafl27:45-58, 1981.

Thierry Coquand, @&rard Huet, et al. Cog homepage, 2012. http://coq.inria.fr/.

Rowan DaviesPractical Refinement-Type CheckirfghD thesis, Carnegie Mellon University, 2005. CMU-
CS-05-110.

Joshua Dunfield. Refined typechecking with StardusPrsgramming Languages meets Program Verifica-
tion (PLPV '07) 2007a.

Joshua Dunfield A Unified System of Type Refinemer@hD thesis, Carnegie Mellon University, 2007b.
CMU-CS-07-129.

Joshua Dunfield. Greedy bidirectional polymorphismMh Workshoppages 15-26, 200%.ttp: //www.
cs.cmu.edu/” joshuad/papers/poly/

Joshua Dunfield. Elaborating intersection and union type$CHi, 2012. To appear, draft available from
http://www.cs.cmu.edu/~ joshuad/papers/intcomp.

Joshua Dunfield and Frank Pfenning. Type assignment for intesescand unions in call-by-value lan-
guages. IrfFound. Software Science and Computation Structures (FOSS8), pages 250-266, 2003.

Joshua Dunfield and Frank Pfenning. Tridirectional typecheckimPrinciples of Programming Languages
pages 281-292, 2004.

Gerhard Gentzen. Investigations into logical deduction. In kal®, editorCollected papers of Gerhard
Gentzenpages 68—131. North-Holland, 1969.

Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientkant@&dual modal type theoryACM Trans.
Computational Logic9(3), 2008.

Frank Pfenning, Carsten Sofmann, et al. Twelf homepage, 2018ttp://twelf.org/wiki/Main_
Page.

Brigitte Pientka. A type-theoretic foundation for programminghaliigher-order abstract syntax and first-
class substitutions. IRrinciples of Programming Languaggsages 371-382, 2008.

Benjamin C. PierceProgramming with Intersection Types and Bounded PolymerphPhD thesis, Carnegie
Mellon University, 1991. Technical Report CMU-CS-91-205.

Benjamin C. Pierce and David N. Turner. Local type inferen®€EM Trans. Programming Languages and
Systems22:1-44, 2000.

John C. Reynolds. Preliminary design of the programming langlagsythe. Technical Report CMU-
CS-88-159, Carnegie Mellon University, 198&ttp://doi.library.cmu.edu/10.1184/0CLC/
18612825.

John C. Reynolds. Design of the programming language Forsyteehnical Report CMU-CS-96-146,
Carnegie Mellon University, 1996.

Hongwei Xi. Dependent Types in Practical ProgrammirhD thesis, Carnegie Mellon University, 1998.

Hongwei Xi and Frank Pfenning. Dependent types in practicalparogiing. InPrinciples of Programming
Languagespages 214227, 1999.

http://www.cs.cmu.edu/~joshuad/papers/poly/
http://www.cs.cmu.edu/~joshuad/papers/poly/
http://www.cs.cmu.edu/~joshuad/papers/intcomp
http://twelf.org/wiki/Main_Page
http://twelf.org/wiki/Main_Page
http://doi.library.cmu.edu/10.1184/OCLC/18612825
http://doi.library.cmu.edu/10.1184/OCLC/18612825

	Introduction
	Overview
	A Language with Guard Annotations
	Bidirectional Typechecking
	Merging
	Guard Annotations
	Free Annotation

	Extension to Indexed Types with Index Variables
	Indexed Types
	Indexed Types Without Binders
	Indexed Types With Binders
	Free Annotation Revisited

	Comparison to Contextual Typing Annotations
	Comparison to Contextual Types

