Toward Isomorphism of Intersection and Union Types

Mario Coppo Mariangiola Dezani-Ciancaglini
Dip. di Informatica, Univ. di Torino, Italy Dip. di Informatica, Univ. di Torino, Italy
Ines Margaria Maddalena Zacchi
Dip. di Informatica, Univ. di Torino, Italy Dip. di Informatica, Univ. di Torino, Italy

In this paper we investigate type isomorphism iN-aalculus with intersection and union types. It
is known that inA-calculus, the isomorphism between two types is realisedrbinvertible term.
Notably all invertible terms are linear terms. Type isontosm is usually proved using a form of
Inversion Lemma to relate terms and types. Currently initeedture there is no Inversion Lemma
for intersection and union types. Moreover, the subjeaticédn property doesn’t hold.

In the present paper we prove an Inversion Lemma for lineardén the intersection and union
type system, showing also that subject reduction holdshamt Invertible terms being linear terms,
this inversion lemma gives a tool to investigate isomonphdf intersection and union types. We
define a sufficient condition to assure this isomorphism. fgexrture that this condition is also
necessary. The validity of the conjecture would provide mglete characterisation of type isomor-
phism.

1 Introduction

In a calculus with types, two typesandt are calledsomorphicif there exist two term® of typeoc — 1
andP’ of typet — o such that both their compositioi’s> P’ andP’ o P give the identity (at the proper
type). The study of type isomorphism started in the 1980 thi¢haim to find all the type isomorphisms
valid in every model of a given languadé [3]. If one looks as throblem choosing as language\a
calculus with types, one can immediately note the closdioeldetween the type isomorphism and the
A-term invertibility. Actually in the untyped-calculus a\-termP isinvertibleif there is aA-termP’ such
thatPo P’ =P oP =1 (I = Ax.X). The problem of term invertibility has been extensivelydi¢d for the
untypedi-calculus since 1970 and the main result has been the cangblatacterisation of the invertible
A-terms inABn-calculus [4]: the invertible terms are all and only fivéte hereditary permutators

Definition 1.1 (Finite Hereditary PermutatorsA finite hereditary permutatdf.h.p. for short) is a\-
term of the form (modul@n-conversion)

AXY1..YnX(Piyr)) - - (PaYnm)) (N>0)

whereTttis a permutation ofl,....n, and R...P, are f.h.p.

Note that the identity\ x.x is trivially a f.h.p. (taken = 0). Another example of f.h.p. sXy1yo.Xyoy1 =
Axyry2 X((Az2)y2) (Az2)y1).

Theorem 1.2. A A-term is invertible iff it is a finite hereditary permutator.

This result, obtained in the framework of the untypedalculus, has been the basis for studying
type isomorphism in different type systems for thecalculus. Note that the f.h.p.s have closed
normal forms; moreover every f.h.® has, moduldn-conversion, a unique inverge 1. Taking into

*The first three authors are supported by the MIUR Project IBOIe last author is supported by the MIUR Project BRR.

Submitted to: ITRS 2012

2 Toward Isomorphism of Intersection and Union types

account these properties, the definition of type isomomphisaA-calculus with types can be stated as
follows:

Definition 1.3 (Type isomorphism) Given aA-calculus with types, two typesand T are isomorphic
(o ~ 1) if there exists a f.h.p. P such thatP: 0 — 1 and- P~1: 1 — 0. In this case we say that P proves
the isomorphism.

The main line used to characterise the isomorphisms in andiyge system has been to provide
a suitable set of equations and to prove that these equatidose the type isomorphism w.r.3n-
conversion, i.e. that the types of the f.h.p.s are all ang tidse induced by the set of equations.

The first typedh-calculus studied has been the simply typedalculus, for which it is proved [3]
that it is necessary a unique equation, sh&p equation:

C—=>T—Pp=T—0—p

Afterwords the study has been directed toward rickeralculi, obtained from the simply typed-
calculus by adding, in an incremental way, some other typestcactors (like product and unit types)
or by allowing higher order types (System F). The equatidreracterising the type isomorphism are
summarised in[6]; one can note that also the sets of eqsatibay to an incremental law in the sense
that the set of equations for a typ@ecalculus obtained by adding a primitive to a givertalculus,
results to be an extension of the set of equations olktbalculus without that primitive.

In the presence of intersection types this incrementalagmbr doesn’t work as pointed out in [5];
in particular with intersection types, the isomorphism @slonger a congruence and type equality in
the standard models of intersection types doesn’t entadl isomorphism. These quite unexpected facts
required the introduction of a syntactical notion of typeigarity in order to fully characterise the iso-
morphic types([b].

The study of isomorphism looks even harder for type systeiitis mtersection and union types
because for these systems, in general, the subject redymtiperty doesn’t hold and no kind biver-
sion Lemméas been provided so far (s€é [2]). This is a real techniéfitulty because the Inversion
Lemma allows a reverse reading of the inference rules. liicpdar if the subject of the conclusion is an
application or an abstraction, then it gives some inforamatin types of its immediate subterms.

In this paper we will show that in a type system with intergettand union types both subject
reduction and an Inversion Lemma hold fimear terms, i.e. terms in which each variable occurs exactly
once. Since the f.h.p.s are linear terms this provides thletdanvestigate type isomorphism. We will
then prove some interesting isomorphisms correspondibggit properties of set and function theories.
We will finally define a notion of similarity for intersectioand union types that implies isomorphism
and, we conjecture, fully characterises it.

2 Subject reduction for linear terms

The union/intersection type system considered in this pepthe basic one introduced in the seminal
paper [7]. We only omit to include the universal ty@gas in [5]), so considering only typeable terms
which have a normal form and cannot be equated in any theory.

The formal syntax of intersection and union types is:

c = ¢ |o—~0]|O0OANO|OVO

whered denotes an atomic type. Lett,p,0 range over types. Types are considered modulo idempo-
tence, commutativity and associativity ofandV. We are then allowed to writd,., o; and\/;¢, o; with

M. Coppo, M. Dezani-Ciancaglini, I. Margaria & M. Zacchi 3

(AX) rx:oFx:0

(1) Mx:oFM:1 (> E) IN-M:0—1t TEN:o
FrN=AxxM:o—1 IN-MN:1
FrMNFM:olfrEM:t FrMN-M:oAT rMN-M:o

(A FrNEM:oAT (AE) MrMN-M:o (V1) NMN-M:ovt

Nx:oFM:p Ix:tEFM:p TEN:oVTt

(VE) FrEMIN/X :p

Figure 1: Typing Rules

finite I. Conventionally, we omit parentheses accordindgheogrecedence rule/andA over—” and we
assume that> associates to the right.

We will introduce two type assignment systems for thesegyfiee standard one introduced lin [2]
and another one with a slightly more general version ofittimination rule. The latter version has the
same properties of the former one, but allows to prove mgresysomorphisms. Since the Inversion
Lemma and subject reduction for linear terms have an irtterélsemselves, in this section we will state
them for the standard system. The extensions to the secatehsyare in most cases straightforward
(one minor difference will be explicitly remarked).

The standard type assignment system is the system of iatersend union types for the ordinary
A-calculus with the typing rules of Fidll 1. As usual the enmim@ntl” contains only one statement for
any variable.

It is easy to verify that the following rule:

MXx:oFM:1

(AL) Mx:oApFEM:T

is admissible.

As remarked in the introduction, in this system types arepmeserved by3-reduction. In fact,
because of ruléVvE), the correspondence between subterms and subdeductlost &nd so it is some-
times impossible to reconstruct a type deduction for theicedf a typed term. This is also the reason
why, in general, no kind of Inversion Lemma has been provethie system.

For example, one can deduce the type— o —-T)A(p—p—1) — (86— 0Vp) — 0 — T both
for Axyzx(yz)(yz) andAxyzx(lyz)(lyz), but this type can be deduced neither Xayzx(l yz)(yz) nor for
Axyzx(yz)(lyz).

To overcome this difficulty two solutions have been proposef2]: the introduction of a parallel
reduction strategy and the use of type theories to enricaghgnment system axiomatizing inequalities
representing semantic inclusion of types. Both techniguesot interesting here since we want keep
the original introduction and elimination rules and workwstandard3n-reduction. It is also known
[1] that, when union is considered, types are preserved diibg-value A-calculus [8], obtained by
restricting the-rule to redexes whose argument is a value, i.e. a variatde abstraction, but this also
requires to be bound to a specific reduction strategy.

In the following we prove that both the subject reductionpamty and an Inversion Lemma hold in
the basic system if we restrict ourself to consider lineamge Note, for instance, that the term used

4 Toward Isomorphism of Intersection and Union types

above as counter example of subject reduction is not line@itzat the problem arises when only one of
the two instances diyzis reduced.

Since finite hereditary permutators are linear terms thsgriction is not relevant as far as we are
interested in investigating type isomorphisms.

Before approaching the main results of this section, letai® & lemma proving a property of type
derivations for abstractions, which will be used in the praicthe Inversion Lemma.

Lemma 2.1. If N is a derivation of - AX.M : A, 0i then for each i | there exists a derivatiofl; of
I = AX.M : g; such that the number of applied ruleslihis less than that ir1.

Proof. The proof is by induction on derivations. O
Note that an analogous lemma for theconstructor doesn't hold. In fact it is easy to prove that
2:0VIFEAXXZ: ((0 = 0)A(T—=T1) = 0) V(0= 0)A(T—=T)—T)
butz:oViF Axxz: (0 —-0)A(T—1) »0andz: oVIF AXXZ: (0 > 0)A(T—T) = T.

To state thdnversion Lemmdéor linear terms it is useful to introduce the following réens on the
set of types. The relation “fit", denoted twy;, permits to link the types deduced for a variable to the as-
sumption in the environment for the variable itself. Thatiens “agree”, denoted hy, and “co-agree”,
denoted by, relate types of applications and abstractions to typekeif subterms.

Definition 2.2. DefineagvT as the minimal reflexive and transitive relation satisfying

ovtandovp imply OVTAp
OVTAP implies ovTt

ovT implies ovTVp

ovpandtvp imply oVtvp.

Definition 2.3. Definea>1 — p by:

0O—>1T>0—T
01>T1 —prandoa>T1 — P2 imply O1AC>T1AT, — P1AP2
o>T— P1AP2 implies o>T— P1
o>T—p implies o>T—pVve
01>T1 —~pandor,>To— P imply 01A02>T1V 12— pand
01VO2>T1 AT — P.

Definition 2.4. Definec <1 — p by:
0—=>1<40—T

odT—p implies ovedgT—p
0171 = prando, <ty — P2 imply O01A02<IT1A T — P11V P2.

M. Coppo, M. Dezani-Ciancaglini, I. Margaria & M. Zacchi 5

The introduced relations are used to state an Inversion Lafomlinear terms and a Key Lemma,
from which the subject reduction property for linear terrasily follows. The former characterizes the
types of the immediate subterms of a given term and the Isdigs that the types that the system allows
to assign to terms which are abstractions go along (co-pwige arrow types.

Lemma 2.5(Inversion Lemma folinearterms) 1. If',x: o+ x: 1, thenoVvr.

2. IfTEMN: o and MN is a linear term, then there amrp such thatf M : 1, ' - N : p and
>p— 0.

3. Ifr =Ax.M : o and M is a linear term, then there argp such thatr ,x: THFM:pando<t—p.
Proof. By induction on derivations. O
Lemma 2.6(Key lemma for SR) If ' - AX.M : c ando>1— p, thenl",x: THM: p.

Proof. By induction on derivations. O
Theorem 2.7(SR forlinear terms) If M is a linear term and - M : c and M—* N, then - N : @.
Proof. It is easy to show thaf - (AX.M)N : o implies" - M[N/x] : o using the Inversion and Key
Lemmas. O
3 Type isomorphism

The following basic isomorphisms are directly related ensfard properties of functional types. The
n-expansion of the identitkxy.xy shows them.
Lemma 3.1. The following isomorphisms hold:

— Acomm. 0= TAPp~(C—T)A(0C—p)
—veomm. oVI—p~r(0—p

>
=
1
°

To prove the isomorphism of the distributive laws of set tigage need instead to enforce theE)
rule in the following way:

Mx:oABFM:p Fx:tABFM:p TEN:(oVT)AB
FEM[N/X :p

(VE')

Note that rule(VE) is admissible in the system with ru{&’E’) by taking® = o\ 1, since we can
derivex: o A (o V1) from x: o and similarly fort.
Using rule(VE’) and again the identity we can prove the following:

Lemma 3.2. The following isomorphisms hold:

DistAV. pA(OVT)
DistvA. pV(OAT)

6 Toward Isomorphism of Intersection and Union types

Only DistAV left-to-right andDistVA right-to-left need ruleVE’). For the other two directions rule
(VE) is enough.

It is interesting to remark that all isomorphisms introdiige this section are provable equalities in
the systenB_. of relevant logic[[9].

It is crucial to remark that the Inversion Lemma for lineante (Lemma 2.J5) holds for the extended
system if we replace the last clause in the definition of "fid&finition[2.2) by:

oABVpandtABVp imply (oVT)ABVp.

We introduce now a relation of similarity between sequertfagpes and between types which as-
sures isomorphism of the related types. The basic aim ofé¢hasion is that of formalising isomorphism
determined by argument permutations. Similarity is thetrimisresting relation preserving type isomor-
phism and it will play the fundamental role in our (conjeetdy complete characterisation of all provable
isomorphisms when the system with r§leE’) is considered. In this definition we must be careful to
take into account the fact that, for two types to be isomarghis not sufficient that they coincide mod-
ulo permutations of types in the arrow sequences, as in geafacartesian products. The permutation
must be the same for all the corresponding type pairs in @mnsattion or in an union. The notion of
similarity exactly expresses such property.

Definition 3.3 (Similarity). Thesimilarity relation between two sequences of tyfies. .. ,Om), (T1,...,Tm),
written (01,...,0m) ~ (T1,...,Tm), iS the smallest equivalence relation such that:

1. (01,...,0m) ~ (O1,...,0m);

2. if (01,...,0i,0i41,...,0m) ~ (T1,...,Ti, Tit1, ..., Tm), then

(01,...,0i AGit1,...,0m) ~ (T1,..., i ATit1,...,Tm) and
(01,...,0iVOit1,---,0m) ~ (T1,..., [V Tit1,. .., Tm)

3. if (0, ,0™) ~ @ ™y for1<i<nand(py,...,pm) ~ (P}..... Pk, then

0 5 o o0l s ot o) ~
1 1
<r$[()1> e _>T1('t()n) _>p/1""’T£rT1)> A _>T$f% = P,

wherertis a permutation of, ..., n.

Similarity between typess trivially defined as similarity between unary sequences: T if (o) ~ (T).

As a first example note that we have immediately» 1 — p ~ T — 0 — p, which represents the
basic argument swapping. The isomorphism is shown by thaygatorAxyiy».Xy» y1
As a less simple example the types:
0= (1= 2= 01VI2) A (b3 — da— §3) = (91— d2— d3) = ¢1) V(93 — d4 — bs5) — ¢3) and
T= (02— d1— 01V d2) A (0s — b3 — ¢3) = (D2 = b1 — d3) = d1) V (04 — 3 — ¢5) — 03)
are similar. The f.h.p. showing the isomorphismPis= AXVy1 Y2.X(A2122.Y12071) (A212,.Y2207;), Where
FP:o— tand-P1:1— 0. Note that this typing would fail if we replace inthe subtype
(92 = 91— 93) = ¢1) V (b4 — b3 — d5) — d3) with
(b1 — b2 — d3) — d1) V ((04 — d3 — ds) — ¢3), since the arguments are permuted in only one of the
branches of the operator.

M. Coppo, M. Dezani-Ciancaglini, I. Margaria & M. Zacchi 7

Another example is:
0= (61— 92— 01V P2) A (93— b4 — d3) = (01— b2 — d3— ¢1) V (¢3 — b4 — ¢5 — ¢3) and
T= (02— 01— 01V d2) A (ds— b3 —= d3) = (93— ¢2 = b1 — ¢1) V (d5 = ds — 3 — ¢3). The
f.h.p. showing the isomorphism B= AXV1 Y2 Y3Ya.X(AZ12,.Y12271)Y4Y3Y>.

The following Lemma is proved by induction on the definitidn-a
Lemma3.4.1f o ~1theno~T.

We conjecture that this lemma is true also in the oppositection for types in a hormal form to
be defined, thus giving a complete characterisation of th@asphisms provable in the-calculus with
intersection and union types.

3.1 Normal Forms and the completeness conjecture

The notion of similarity is not enough to characterise akgible isomorphisms. We need (at least) to
exploit some provable inclusion properties of types and#sic laws introduced above (i.e: Acomm,

— vcomm, DistAV, DistvA), allowing to apply them (when possible) also at the levelutitgpes. To
this aim, following the approach df[5], we introduce a natimf normal formof types such that:

e reduction to normal form preserves isomorphism;
e the normal form of a type is unique.

Normal forms are reached by applying as far as possible fl@viag set of isomorphism preserving
transformations, that are all defined by suitaiplexpansions of the identity:

e the elimination of redundant intersections and unions,asmting types that are intuitively (and
provably) included, like the case 66 — 1) A (0V p — 1), that can clearly be reduceddo/p — 1
or (0 — pVT1)A(0— 1), that can be reduced o— 1 (erasure;

e the distribution of arrows over intersections and unionliyination of intersection to the right
of arrows and union to the left of arrows using the isomonpisis— Acomm) and (~ vcomm)
from left to right and the isomorphismBist AV) (splitting);

e the reduction of the so obtained types to unions of inteimestof arrows, using andist VA)
and Dist AV) (distribution).

For example the typ&(d1 Ad2 — ¢2V §3) A (92 — 05)) V (92 A 03 — ¢5) A (da — d3V §s)) is in
normal form. Another example i§d1 A d2 — ¢2) A (D2 — d5)) V ((d2 — ds5) A (da — d3V d5) — de).

This normalisation process, although rather intuitiveedsesome care. Because the transformations
used to reduce a type to its normal form must be isomorphig®sepving, each transformation has to be
made in a type context[] only if there aren-expansions of the identity proving the isomorphisms. For
instance in the case of splitting we have théb — 1 A p] reduces ta’[(0 — 1) A (0 — p)] only if there
is ann-expansions of the identitid such that

Id:clo—T1Ap]— Cl(c = T)A(0—p)] and
Id:clovt—p]— c[(0—p)A(T—p)]

Analogous considerations must be made for the other tramstmns.
For instance the type® VT — p) A (0 — p) ando vV T — p are isomorphic, while the typeds V1 —
p)Ad and(oVT— p)A (0 — p)Ad, although semantically equal, are not; in factt — p~ (OV1—

Toward Isomorphism of Intersection and Union types

p) A (0 — p) is proved by the)-expansion of the identit)xy.xy, but non-expansion of the identity can
map an atomic type into itself.

Note that an algorithm to find the normal form of an arbitrarpet can be given, so the notion of

normal form is effective.

Using Lemma& 3} we can prove that if the normal forms of tweggandt are similar thero ~ 1.

We conjecture that this also gives a complete charactinisaf isomorphism, i.e. that i ~ t then the
normal forms ofo andt are similar.

References

[1]

(2]
(3]
[4]
[5]
[6]
[7]
[8]
9]

Steffen van Bakel, Mariangiola Dezani-Ciancaglini,dJde’ Liguoro, and Yoko Motohama. The minimal
relevant logic and the call-by-valuecalculus. Technical Report TR-ARP-05-2000, The AusaralNational
University, 2000.

Franco Barbanera, Mariangiola Dezani-Ciancaglind algo de’Liguoro. Intersection and union types: Syn-
tax and semanticgnformation and Computatiqri19:202-230, 1995.

Kim Bruce and Giuseppe Longo. Provable isomorphismsdamdain equations in models of typed languages.
In Robert Sedgewick, edito§TOC'85 pages 263 — 272. ACM Press, 1985.

Mariangiola Dezani-Ciancaglini. Characterizatiomafrmal forms possessing an inverse in Xijg-calculus.
Theoretical Computer Scienc®(3):323-337, 1976.

Mariangiola Dezani-Ciancaglini, Roberto Di Cosmo,d&EBiovannetti, and Makoto Tatsuta. On isomorphisms
of intersection typesACM Transactions on Computational Logicl(4):1-22, 2010.

Roberto Di Cosmo. A short survey of isomorphisms of typdathematical Structures in Computer Science
15:825—-838, 2005.

David MacQueen, Gordon Plotkin, and Ravi Sethi. An idealdel for recursive polymorphic typemforma-
tion and Contro] 71(1-2):95-130, 1986.

Gordon D. Plotkin. Call-by-name, call-by-value and thealculus. Theoretical Computer Sciencg:125—
159, 1975.

Richard Routley and Robert K. Meyer. The semantics oa#ment Ill. Journal of Philosophical Logic
1:192-208, 1972.

	Introduction
	Subject reduction for linear terms
	Type isomorphism
	Normal Forms and the completeness conjecture

