
Submitted to: ITRS 2012

Toward Isomorphism of Intersection and Union Types∗

Mario Coppo
Dip. di Informatica, Univ. di Torino, Italy

Mariangiola Dezani-Ciancaglini
Dip. di Informatica, Univ. di Torino, Italy

Ines Margaria
Dip. di Informatica, Univ. di Torino, Italy

Maddalena Zacchi
Dip. di Informatica, Univ. di Torino, Italy

In this paper we investigate type isomorphism in aλ-calculus with intersection and union types. It
is known that inλ-calculus, the isomorphism between two types is realised byan invertible term.
Notably all invertible terms are linear terms. Type isomorphism is usually proved using a form of
Inversion Lemma to relate terms and types. Currently in the literature there is no Inversion Lemma
for intersection and union types. Moreover, the subject reduction property doesn’t hold.

In the present paper we prove an Inversion Lemma for linear terms in the intersection and union
type system, showing also that subject reduction holds for them. Invertible terms being linear terms,
this inversion lemma gives a tool to investigate isomorphism of intersection and union types. We
define a sufficient condition to assure this isomorphism. We conjecture that this condition is also
necessary. The validity of the conjecture would provide a complete characterisation of type isomor-
phism.

1 Introduction

In a calculus with types, two typesσ andτ are calledisomorphicif there exist two termsP of typeσ → τ
andP′ of typeτ → σ such that both their compositionsP◦P′ andP′ ◦P give the identity (at the proper
type). The study of type isomorphism started in the 1980 withthe aim to find all the type isomorphisms
valid in every model of a given language [3]. If one looks at this problem choosing as language aλ-
calculus with types, one can immediately note the close relation between the type isomorphism and the
λ-term invertibility. Actually in the untypedλ-calculus aλ-termP is invertible if there is aλ-termP′ such
thatP◦P′ = P′ ◦P= I (I ≡ λx.x). The problem of term invertibility has been extensively studied for the
untypedλ-calculus since 1970 and the main result has been the complete characterisation of the invertible
λ-terms inλβη-calculus [4]: the invertible terms are all and only thefinite hereditary permutators.

Definition 1.1 (Finite Hereditary Permutators). A finite hereditary permutator(f.h.p. for short) is aλ-
term of the form (moduloβη-conversion)

λxy1...yn.x(P1yπ(1)) . . . (Pnyπ(n)) (n≥ 0)

whereπ is a permutation of1, . . . ,n, and P1 . . .Pn are f.h.p.

Note that the identityλ x.x is trivially a f.h.p. (taken= 0). Another example of f.h.p. isλxy1y2.xy2 y1 =
λxy1y2.x((λz.z)y2)((λz.z)y1).

Theorem 1.2. A λ-term is invertible iff it is a finite hereditary permutator.

This result, obtained in the framework of the untypedλ-calculus, has been the basis for studying
type isomorphism in different type systems for theλ -calculus. Note that the f.h.p.s have closedλ-
normal forms; moreover every f.h.p.P has, moduloβη-conversion, a unique inverseP−1. Taking into

∗The first three authors are supported by the MIUR Project IPODS. The last author is supported by the MIUR Project BRR.

2 Toward Isomorphism of Intersection and Union types

account these properties, the definition of type isomorphism in aλ-calculus with types can be stated as
follows:

Definition 1.3 (Type isomorphism). Given aλ-calculus with types, two typesσ and τ are isomorphic
(σ ≈ τ) if there exists a f.h.p. P such that⊢ P : σ → τ and⊢ P−1 : τ → σ. In this case we say that P proves
the isomorphism.

The main line used to characterise the isomorphisms in a given type system has been to provide
a suitable set of equations and to prove that these equationsinduce the type isomorphism w.r.t.βη-
conversion, i.e. that the types of the f.h.p.s are all and only those induced by the set of equations.

The first typedλ-calculus studied has been the simply typedλ-calculus, for which it is proved [3]
that it is necessary a unique equation, theswapequation:

σ → τ → ρ = τ → σ → ρ

Afterwords the study has been directed toward richerλ-calculi, obtained from the simply typedλ-
calculus by adding, in an incremental way, some other type constructors (like product and unit types)
or by allowing higher order types (System F). The equations characterising the type isomorphism are
summarised in [6]; one can note that also the sets of equations obey to an incremental law in the sense
that the set of equations for a typedλ-calculus obtained by adding a primitive to a givenλ-calculus,
results to be an extension of the set of equations of theλ-calculus without that primitive.

In the presence of intersection types this incremental approach doesn’t work as pointed out in [5];
in particular with intersection types, the isomorphism is no longer a congruence and type equality in
the standard models of intersection types doesn’t entail type isomorphism. These quite unexpected facts
required the introduction of a syntactical notion of type similarity in order to fully characterise the iso-
morphic types [5].

The study of isomorphism looks even harder for type systems with intersection and union types
because for these systems, in general, the subject reduction property doesn’t hold and no kind ofInver-
sion Lemmahas been provided so far (see [2]). This is a real technical difficulty because the Inversion
Lemma allows a reverse reading of the inference rules. In particular if the subject of the conclusion is an
application or an abstraction, then it gives some information on types of its immediate subterms.

In this paper we will show that in a type system with intersection and union types both subject
reduction and an Inversion Lemma hold forlinear terms, i.e. terms in which each variable occurs exactly
once. Since the f.h.p.s are linear terms this provides the tool to investigate type isomorphism. We will
then prove some interesting isomorphisms corresponding tobasic properties of set and function theories.
We will finally define a notion of similarity for intersectionand union types that implies isomorphism
and, we conjecture, fully characterises it.

2 Subject reduction for linear terms

The union/intersection type system considered in this paper is the basic one introduced in the seminal
paper [7]. We only omit to include the universal typeω (as in [5]), so considering only typeable terms
which have a normal form and cannot be equated in any theory.

The formal syntax of intersection and union types is:

σ := ϕ | σ → σ | σ∧σ | σ∨σ
whereϕ denotes an atomic type. Letσ,τ,ρ,θ range over types. Types are considered modulo idempo-
tence, commutativity and associativity of∧ and∨. We are then allowed to write

∧
i∈I σi and

∨
i∈I σi with

M. Coppo, M. Dezani-Ciancaglini, I. Margaria & M. Zacchi 3

(Ax) Γ,x : σ ⊢ x : σ

(→ I)
Γ,x : σ ⊢ M : τ

Γ ⊢ λx.M : σ → τ
(→ E)

Γ ⊢ M : σ → τ Γ ⊢ N : σ
Γ ⊢ MN : τ

(∧I)
Γ ⊢ M : σ Γ ⊢ M : τ

Γ ⊢ M : σ∧ τ
(∧E)

Γ ⊢ M : σ∧ τ
Γ ⊢ M : σ

(∨I)
Γ ⊢ M : σ

Γ ⊢ M : σ∨ τ

(∨E)
Γ,x : σ ⊢ M : ρ Γ,x : τ ⊢ M : ρ Γ ⊢ N : σ∨ τ

Γ ⊢ M[N/x] : ρ

Figure 1: Typing Rules

finite I. Conventionally, we omit parentheses according to the precedence rule “∨ and∧ over→” and we
assume that→ associates to the right.

We will introduce two type assignment systems for these types, the standard one introduced in [2]
and another one with a slightly more general version of the∨ elimination rule. The latter version has the
same properties of the former one, but allows to prove more types isomorphisms. Since the Inversion
Lemma and subject reduction for linear terms have an interest in themselves, in this section we will state
them for the standard system. The extensions to the second system are in most cases straightforward
(one minor difference will be explicitly remarked).

The standard type assignment system is the system of intersection and union types for the ordinary
λ-calculus with the typing rules of Fig. 1. As usual the environmentΓ contains only one statement for
any variable.

It is easy to verify that the following rule:

(∧L)
Γ,x : σ ⊢ M : τ

Γ,x : σ∧ρ ⊢ M : τ

is admissible.

As remarked in the introduction, in this system types are notpreserved byβ-reduction. In fact,
because of rule(∨E), the correspondence between subterms and subdeductions islost, and so it is some-
times impossible to reconstruct a type deduction for the reduct of a typed term. This is also the reason
why, in general, no kind of Inversion Lemma has been proved for this system.

For example, one can deduce the type:(σ → σ → τ)∧ (ρ → ρ → τ)→ (θ → σ∨ρ)→ θ → τ both
for λxyz.x(yz)(yz) andλxyz.x(I yz)(Iyz), but this type can be deduced neither forλxyz.x(Iyz)(yz) nor for
λxyz.x(yz)(I yz).

To overcome this difficulty two solutions have been proposedin [2]: the introduction of a parallel
reduction strategy and the use of type theories to enrich theassignment system axiomatizing inequalities
representing semantic inclusion of types. Both techniquesare not interesting here since we want keep
the original introduction and elimination rules and work with standardβη-reduction. It is also known
[1] that, when union is considered, types are preserved for call-by-value λ-calculus [8], obtained by
restricting theβ-rule to redexes whose argument is a value, i.e. a variable oran abstraction, but this also
requires to be bound to a specific reduction strategy.

In the following we prove that both the subject reduction property and an Inversion Lemma hold in
the basic system if we restrict ourself to consider linear terms. Note, for instance, that the term used

4 Toward Isomorphism of Intersection and Union types

above as counter example of subject reduction is not linear and that the problem arises when only one of
the two instances ofIyz is reduced.

Since finite hereditary permutators are linear terms this restriction is not relevant as far as we are
interested in investigating type isomorphisms.

Before approaching the main results of this section, let us state a lemma proving a property of type
derivations for abstractions, which will be used in the proof of the Inversion Lemma.

Lemma 2.1. If Π is a derivation ofΓ ⊢ λx.M :
∧

i∈I σi then for each i∈ I there exists a derivationΠi of
Γ ⊢ λx.M : σi such that the number of applied rules inΠi is less than that inΠ.

Proof. The proof is by induction on derivations.

Note that an analogous lemma for the∨-constructor doesn’t hold. In fact it is easy to prove that

z : σ∨ τ ⊢ λx.xz: ((σ → σ)∧ (τ → τ)→ σ)∨ ((σ → σ)∧ (τ → τ)→ τ)

but z : σ∨ τ 0 λx.xz: (σ → σ)∧ (τ → τ)→ σ andz : σ∨ τ 0 λx.xz: (σ → σ)∧ (τ → τ)→ τ.

To state theInversion Lemmafor linear terms it is useful to introduce the following relations on the
set of types. The relation “fit”, denoted by▽, permits to link the types deduced for a variable to the as-
sumption in the environment for the variable itself. The relations “agree”, denoted by⊲, and “co-agree”,
denoted by⊳, relate types of applications and abstractions to types of their subterms.

Definition 2.2. Defineσ▽τ as the minimal reflexive and transitive relation satisfying:

σ▽τ andσ▽ρ imply σ▽τ∧ρ
σ▽τ∧ρ implies σ▽τ

σ▽τ implies σ▽τ∨ρ
σ▽ρ andτ▽ρ imply σ∨ τ▽ρ.

Definition 2.3. Defineσ⊲ τ → ρ by:

σ → τ⊲σ → τ
σ1⊲ τ1 → ρ1 andσ2⊲ τ2 → ρ2 imply σ1∧σ2⊲ τ1∧ τ2 → ρ1∧ρ2

σ⊲ τ → ρ1∧ρ2 implies σ⊲ τ → ρ1

σ⊲ τ → ρ implies σ⊲ τ → ρ∨θ
σ1⊲ τ1 → ρ andσ2⊲ τ2 → ρ imply σ1∧σ2⊲ τ1∨ τ2 → ρ and

σ1∨σ2⊲ τ1∧ τ2 → ρ.

Definition 2.4. Defineσ⊳ τ → ρ by:

σ → τ⊳σ → τ
σ⊳ τ → ρ implies σ∨θ⊳ τ → ρ

σ1⊳ τ1 → ρ1 andσ2⊳ τ2 → ρ2 imply σ1∧σ2⊳ τ1∧ τ2 → ρ1∨ρ2.

M. Coppo, M. Dezani-Ciancaglini, I. Margaria & M. Zacchi 5

The introduced relations are used to state an Inversion Lemma for linear terms and a Key Lemma,
from which the subject reduction property for linear terms easily follows. The former characterizes the
types of the immediate subterms of a given term and the lattersays that the types that the system allows
to assign to terms which are abstractions go along (co-agree) with arrow types.

Lemma 2.5(Inversion Lemma forlinear terms). 1. If Γ,x : σ ⊢ x : τ, thenσ▽τ.

2. If Γ ⊢ MN : σ and MN is a linear term, then there areτ,ρ such thatΓ ⊢ M : τ, Γ ⊢ N : ρ and
τ⊲ρ → σ.

3. If Γ ⊢ λx.M : σ and M is a linear term, then there areτ,ρ such thatΓ,x : τ ⊢ M : ρ andσ⊳ τ → ρ.

Proof. By induction on derivations.

Lemma 2.6(Key lemma for SR). If Γ ⊢ λx.M : σ andσ⊲ τ → ρ, thenΓ,x : τ ⊢ M : ρ.

Proof. By induction on derivations.

Theorem 2.7(SR for linear terms). If M is a linear term andΓ ⊢ M : σ and M−→∗ N, thenΓ ⊢ N : σ.

Proof. It is easy to show thatΓ ⊢ (λx.M)N : σ implies Γ ⊢ M[N/x] : σ using the Inversion and Key
Lemmas.

3 Type isomorphism

The following basic isomorphisms are directly related to standard properties of functional types. The
η-expansion of the identityλxy.xy shows them.

Lemma 3.1. The following isomorphisms hold:

→∧comm. σ → τ∧ρ ≈ (σ → τ)∧ (σ → ρ)
→∨comm. σ∨ τ → ρ ≈ (σ → ρ)∧ (τ → ρ)

To prove the isomorphism of the distributive laws of set theory we need instead to enforce the(∨E)
rule in the following way:

(∨E′)
Γ,x : σ∧θ ⊢ M : ρ Γ,x : τ∧θ ⊢ M : ρ Γ ⊢ N : (σ∨ τ)∧θ

Γ ⊢ M[N/x] : ρ

Note that rule(∨E) is admissible in the system with rule(∨E′) by takingθ = σ∨ τ, since we can
derivex : σ∧ (σ∨ τ) from x : σ and similarly forτ.

Using rule(∨E′) and again the identity we can prove the following:

Lemma 3.2. The following isomorphisms hold:

Dist∧∨. ρ∧ (σ∨ τ)≈ (ρ∧σ)∨ (ρ∧ τ)
Dist∨∧. ρ∨ (σ∧ τ)≈ (ρ∨σ)∧ (ρ∨ τ)

6 Toward Isomorphism of Intersection and Union types

Only Dist∧∨ left-to-right andDist∨∧ right-to-left need rule(∨E′). For the other two directions rule
(∨E) is enough.

It is interesting to remark that all isomorphisms introduced in this section are provable equalities in
the systemB+ of relevant logic [9].

It is crucial to remark that the Inversion Lemma for linear terms (Lemma 2.5) holds for the extended
system if we replace the last clause in the definition of ”fit” (Definition 2.2) by:

σ∧θ▽ρ andτ∧θ▽ρ imply (σ∨ τ)∧θ▽ρ.

We introduce now a relation of similarity between sequencesof types and between types which as-
sures isomorphism of the related types. The basic aim of thisrelation is that of formalising isomorphism
determined by argument permutations. Similarity is the most interesting relation preserving type isomor-
phism and it will play the fundamental role in our (conjectured) complete characterisation of all provable
isomorphisms when the system with rule(∨E′) is considered. In this definition we must be careful to
take into account the fact that, for two types to be isomorphic, it is not sufficient that they coincide mod-
ulo permutations of types in the arrow sequences, as in the case of cartesian products. The permutation
must be the same for all the corresponding type pairs in an intersection or in an union. The notion of
similarity exactly expresses such property.

Definition 3.3 (Similarity). Thesimilarity relation between two sequences of types〈σ1, . . . ,σm〉, 〈τ1, . . . ,τm〉,
written 〈σ1, . . . ,σm〉 ∼ 〈τ1, . . . ,τm〉, is the smallest equivalence relation such that:

1. 〈σ1, . . . ,σm〉 ∼ 〈σ1, . . . ,σm〉;

2. if 〈σ1, . . . ,σi ,σi+1, . . . ,σm〉 ∼ 〈τ1, . . . ,τi ,τi+1, . . . ,τm〉, then

〈σ1, . . . ,σi ∧σi+1, . . . ,σm〉 ∼ 〈τ1, . . . ,τi ∧ τi+1, . . . ,τm〉 and
〈σ1, . . . ,σi ∨σi+1, . . . ,σm〉 ∼ 〈τ1, . . . ,τi ∨ τi+1, . . . ,τm〉

3. if 〈σ(1)
i , . . . ,σ(m)

i 〉 ∼ 〈τ(1)i , . . . ,τ(m)
i 〉 for 1≤ i ≤ n and〈ρ1, . . . ,ρm〉 ∼ 〈ρ′

1, . . . ,ρ′
m〉, then

〈σ(1)
1 → . . .→ σ(1)

n → ρ1, . . . ,σ
(m)
1 → . . .→ σ(m)

n → ρm〉 ∼

〈τ(1)π(1) → . . .→ τ(1)π(n) → ρ′
1, . . . ,τ

(m)
π(1) → . . .→ τ(m)

π(n) → ρ′
m〉,

whereπ is a permutation of1, . . . ,n.

Similarity between typesis trivially defined as similarity between unary sequences:σ ∼ τ if 〈σ〉 ∼ 〈τ〉.

As a first example note that we have immediatelyσ → τ → ρ ∼ τ → σ → ρ, which represents the
basic argument swapping. The isomorphism is shown by the permutatorλxy1y2.xy2 y1

As a less simple example the types:
σ = (ϕ1 → ϕ2 → ϕ1∨ϕ2)∧ (ϕ3 → ϕ4 → ϕ3)→ ((ϕ1 → ϕ2 → ϕ3)→ ϕ1)∨ ((ϕ3 → ϕ4 → ϕ5)→ ϕ3) and
τ = (ϕ2 → ϕ1 → ϕ1 ∨ϕ2)∧ (ϕ4 → ϕ3 → ϕ3) → ((ϕ2 → ϕ1 → ϕ3) → ϕ1)∨ ((ϕ4 → ϕ3 → ϕ5) → ϕ3)
are similar. The f.h.p. showing the isomorphism isP = λxy1 y2.x(λz1z2.y1z2z1)(λz1z2.y2z2z1), where
⊢ P : σ → τ and⊢ P−1 : τ → σ. Note that this typing would fail if we replace inτ the subtype
((ϕ2 → ϕ1 → ϕ3)→ ϕ1)∨ ((ϕ4 → ϕ3 → ϕ5)→ ϕ3) with
((ϕ1 → ϕ2 → ϕ3)→ ϕ1)∨ ((ϕ4 → ϕ3 → ϕ5)→ ϕ3), since the arguments are permuted in only one of the
branches of the∨ operator.

M. Coppo, M. Dezani-Ciancaglini, I. Margaria & M. Zacchi 7

Another example is:
σ = (ϕ1 → ϕ2 → ϕ1∨ϕ2)∧ (ϕ3 → ϕ4 → ϕ3)→ (ϕ1 → ϕ2 → ϕ3 → ϕ1)∨ (ϕ3 → ϕ4 → ϕ5 → ϕ3) and
τ = (ϕ2 → ϕ1 → ϕ1∨ϕ2)∧ (ϕ4 → ϕ3 → ϕ3) → (ϕ3 → ϕ2 → ϕ1 → ϕ1)∨ (ϕ5 → ϕ4 → ϕ3 → ϕ3). The
f.h.p. showing the isomorphism isP= λxy1 y2 y3 y4.x(λz1z2.y1z2z1)y4y3y2.

The following Lemma is proved by induction on the definition of ∼.

Lemma 3.4. If σ ∼ τ thenσ ≈ τ.

We conjecture that this lemma is true also in the opposite direction for types in a normal form to
be defined, thus giving a complete characterisation of the isomorphisms provable in theλ-calculus with
intersection and union types.

3.1 Normal Forms and the completeness conjecture

The notion of similarity is not enough to characterise all possible isomorphisms. We need (at least) to
exploit some provable inclusion properties of types and thebasic laws introduced above (i.e.→∧comm,
→∨comm, Dist∧∨, Dist∨∧), allowing to apply them (when possible) also at the level of subtypes. To
this aim, following the approach of [5], we introduce a notion of normal formof types such that:

• reduction to normal form preserves isomorphism;

• the normal form of a type is unique.

Normal forms are reached by applying as far as possible the following set of isomorphism preserving
transformations, that are all defined by suitableη-expansions of the identity:

• the elimination of redundant intersections and unions, representing types that are intuitively (and
provably) included, like the case of(σ → τ)∧(σ∨ρ → τ), that can clearly be reduced toσ∨ρ → τ
or (σ → ρ∨ τ)∧ (σ → τ), that can be reduced toσ → τ (erasure);

• the distribution of arrows over intersections and unions byelimination of intersection to the right
of arrows and union to the left of arrows using the isomorphisms (→ ∧comm) and (→ ∨comm)
from left to right and the isomorphisms (Dist ∧∨) (splitting);

• the reduction of the so obtained types to unions of intersections of arrows, using and (Dist ∨∧)
and (Dist ∧∨) (distribution).

For example the type((ϕ1∧ϕ2 → ϕ2∨ϕ3)∧ (ϕ2 → ϕ5))∨ ((ϕ2∧ϕ3 → ϕ5)∧ (ϕ4 → ϕ3∨ϕ5)) is in
normal form. Another example is((ϕ1∧ϕ2 → ϕ2)∧ (ϕ2 → ϕ5))∨ ((ϕ2 → ϕ5)∧ (ϕ4 → ϕ3∨ϕ5)→ ϕ6).

This normalisation process, although rather intuitive, needs some care. Because the transformations
used to reduce a type to its normal form must be isomorphism preserving, each transformation has to be
made in a type contextC [] only if there areη-expansions of the identity proving the isomorphisms. For
instance in the case of splitting we have thatC [σ → τ∧ρ] reduces toC [(σ → τ)∧ (σ → ρ)] only if there
is anη-expansions of the identityId such that

Id : C [σ → τ∧ρ]→ C [(σ → τ)∧ (σ → ρ)] and
Id : C [σ∨ τ → ρ]→ C [(σ → ρ)∧ (τ → ρ)]

Analogous considerations must be made for the other transformations.
For instance the types(σ∨ τ → ρ)∧ (σ → ρ) andσ∨ τ → ρ are isomorphic, while the types(σ∨ τ →
ρ)∧ϕ and(σ∨τ → ρ)∧ (σ → ρ)∧ϕ, although semantically equal, are not; in factσ∨τ → ρ ≈ (σ∨τ →

8 Toward Isomorphism of Intersection and Union types

ρ)∧ (σ → ρ) is proved by theη-expansion of the identityλxy.xy, but noη-expansion of the identity can
map an atomic type into itself.

Note that an algorithm to find the normal form of an arbitrary type can be given, so the notion of
normal form is effective.

Using Lemma 3.4 we can prove that if the normal forms of two typesσ andτ are similar thenσ ≈ τ.
We conjecture that this also gives a complete characterisation of isomorphism, i.e. that ifσ ≈ τ then the
normal forms ofσ andτ are similar.

References

[1] Steffen van Bakel, Mariangiola Dezani-Ciancaglini, Ugo de’ Liguoro, and Yoko Motohama. The minimal
relevant logic and the call-by-valueλ-calculus. Technical Report TR-ARP-05-2000, The Australian National
University, 2000.

[2] Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo de’Liguoro. Intersection and union types: Syn-
tax and semantics.Information and Computation, 119:202–230, 1995.

[3] Kim Bruce and Giuseppe Longo. Provable isomorphisms anddomain equations in models of typed languages.
In Robert Sedgewick, editor,STOC’85, pages 263 – 272. ACM Press, 1985.

[4] Mariangiola Dezani-Ciancaglini. Characterization ofnormal forms possessing an inverse in theλβη-calculus.
Theoretical Computer Science, 2(3):323–337, 1976.

[5] Mariangiola Dezani-Ciancaglini, Roberto Di Cosmo, Elio Giovannetti, and Makoto Tatsuta. On isomorphisms
of intersection types.ACM Transactions on Computational Logic, 11(4):1–22, 2010.

[6] Roberto Di Cosmo. A short survey of isomorphisms of types. Mathematical Structures in Computer Science,
15:825–838, 2005.

[7] David MacQueen, Gordon Plotkin, and Ravi Sethi. An idealmodel for recursive polymorphic types.Informa-
tion and Control, 71(1-2):95–130, 1986.

[8] Gordon D. Plotkin. Call-by-name, call-by-value and theλ-calculus. Theoretical Computer Science, 1:125–
159, 1975.

[9] Richard Routley and Robert K. Meyer. The semantics of entailment III. Journal of Philosophical Logic,
1:192–208, 1972.

	Introduction
	Subject reduction for linear terms
	Type isomorphism
	Normal Forms and the completeness conjecture

